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Abstract

A minimum cost spanning tree problem analyzes the way to efficiently connect individuals
to a source when they are located at different places; that is, to connect them with the
minimum possible cost. This objective requires the cooperation of the involved individuals
and, once an efficient network is selected, the question is how to fairly allocate the total cost
among these agents. To answer this question the literature proposes several rules providing
allocations that, generally, depend on all the possible connection costs, regardless of whether
these connections have been used or not in order to build the efficient network. To this regard,
our approach defines a simple way to allocate the optimal cost with two main criteria: (1)
each individual only pays attention to a few connection costs (the total cost of the optimal
network and the cost of connecting by himself to the source); and (2) an egalitarian criteria is
used to share costs or benefits. Then, we observe that the spanning tree cost allocation can be
turned into a claims problem and, by using claims rules, we define two egalitarian solutions so
that the total cost is allocated trying to equalize either the payments in which agents incur, or
the benefit that agents obtain throughout cooperation. Finally, by comparing both proposals
with other solution concepts proposed in the literature, we select equalizing payments as much
as possible and axiomatically analyze it, paying special attention to coalitional stability (core
selection), a central property whenever cooperation is needed to carry out the project. As
our initial proposal might propose allocations outside the core, we modify it to obtain a core
selection and we obtain an alternative interpretation of the Folk solution.

Keywords: Minimum cost spanning tree, Egalitarian, Cost sharing, Core
JEL classification: C71, D63, D71.

1. Introduction

We consider a situation in which some individuals, located at different places, want to
be connected to a source in order to obtain a good or a service. Each link connecting any
two individuals, or connecting each individual to the source, has a specific fixed cost. This
situation is known as the minimum cost spanning tree problem (hereafter, the mcst problem)
and it is used to analyze different actual issues, such as telephone, cable TV or water supply
networks.

There are several methods for obtaining a way of connecting agents to the source so that
the total cost of the selected network is minimum. Once the minimum cost network is built,
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several different solutions have been proposed to allocate the cost among the individuals,
such as Bird rule (Bird, 1976), Kar (Kar, 2002), Folk (Feltkamp et al., 1994; Bergantiños
and Vidal-Puga, 2007), Cycle-complete (Trudeau, 2012), a family of strict responsive rules
(Bogomolnaia and Moulin, 2010), etc. Some of these solutions take into account the cost of
every link in the network, so all the costs are relevant in order to set the final allocation of
the optimal cost, although most of them will never be used. Contrary to this trend, we define
a model in which only a few costs in the network are considered.

In doing so, our main assumption is that individuals are not worried about costs of links
not being used. They have a local vision of the network and only a few information is relevant
to them. At this point, it is important to remark that cooperation among all individuals
is needed to build the efficient network. That is, if some individual does not agree with the
allocation of the cost, this individual might connect to the source on his own and the cheapest
network is not built.1

Then, we follow a reductionist approach in which some information is not used, or simpli-
fied, when obtaining the cost sharing of a mcst problem. Specifically, we suppose that each
individual is only concerned about two particular costs:

(a) The cost of the link (or links) used by the individual for efficiently connect to
the source by himself.

(b) The total cost of the optimal network.

If there is no cooperation, each agent will connect to the source by himself and the total cost
of the network will be (probably) much higher than the one provided by the efficient network
(the minimum cost spanning tree).

Our second key point is the use of an egalitarian criterion. Taking into account that no one
should pay more than the cost of connecting to the source by himself (individual rationality),
our approach will allocate the cost based on an equal distribution of the benefit of cooperation.
This approach leads us to solve the allocation problem by using claims rules. Let us observe
some examples that will illustrate our idea.

(A) Consider a set of three houses in a row (at the same distance each one from the other).
A water supply ω is located at one end of the row. The cost of each link among the
houses is 1 monetary unit and the nearest house to the supply may connect directly with
a cost of 10 units; the second house has a direct cost of 11 units; and the cost of directly
connecting the farthest house is 12 units. The total (minimum) cost of connecting the
three houses to the water supply is 12 units. If each individual connects directly to the
source, the total cost is 33 units.

2 13 ω
1 101

1 Actual situations reveal that agents do not necessarily agree on how to distribute this cost, in which
case the social optimum is not implemented. Hence, a more expensive network is built (for an example, see
Bergantiños and Lorenzo (2004); see also Hernández et al. (2016) for a discussion about individual and social
optimality).
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In this situation, the cooperation provides a benefit (savings) of 21 monetary units. The
question is how to share this benefit. Note that individual 1 is in a “better position” and
that he pays less than the other individuals would be a possible option. If the benefit of
cooperation is equally shared, each agent obtains a return of 7 unitary units. But an
egalitarian cost sharing will propose an allocation of 4 units for each individual.

(B) Consider a similar situation, but now individual 1 is near to the source, whereas in-
dividuals 2 and 3 remain at the same location and the costs vary accordingly (the new
situation is as depicted in the following graph):

2 13 ω
10 11

As in the previous case, the total (minimum) cost of connecting the three houses to
the water supply is 12 units. But the situation is quite different and now cooperation
provides a benefit of 12 monetary units. An equal sharing of the benefits originates a
negative allocation to individual 1; that is, he obtains a net benefit from his participation
in the network. On the other hand, observe that in the new situation an equal allocation
of the cost is not admissible for the first individual, since he may connect to the source
with a cost of 1 unit, instead of paying 4 units.

As aforementioned, our main criterion in allocating the cost of the optimal tree is that of
egalitarian sharing of benefits of cooperation (the difference between the cost of connecting
each individual by himself and the cost of the optimal spanning tree). Equal sharing of a
common cost or benefit is one of the main criterion supported in the literature. In Moulin
(1987) the egalitarian methods appear, jointly with the proportional method, as the most
important (and simple) ways of sharing a joint cost or benefit.

The rest of the paper is organized as follows. Section 2 presents the formal minimum cost
spanning tree problem. In Section 3 we relate minimum cost spanning tree problems with
claims problem and introduce our solution concept. Its properties are analyzed in Section
4. Section 5 deals with the stability of the proposed solution. We show that, in general, our
proposal may lie outside the core in some situations. When looking for a suitable modification
fulfilling core stability, we obtain a new interpretation of the Folk solution.

2. Preliminaries: Minimum cost spanning tree problem

A mcst problem involves a finite set of individuals, N “ t1, 2, . . . , nu, who want to be
connected to a source ω. Let Nω “ N Ytωu. The agents are connected by edges and for i ‰ j,
cij P R` represents the cost of the edge eij connecting agents i, j P N. Following the notation
in Kar (2002), cii represents the cost of the edge connecting agent i P N to the source ω. Let
C “ rcijsnˆn the nˆ n symmetric cost matrix. The mcst problem is represented by the pair
pNω,Cq. We denote by Nn the set of all mcst problems with n individuals.

A spanning tree over pNω,Cq P Nn is an undirected graph p with no cycles, which connects
all elements of Nω. We can identify a spanning tree with a function p : N Ñ Nω so that ppiq is
the agent (or the source) to whom i connects in his path to the source, and defines the edges
epi “ pi, ppiqq. In a spanning tree each agent is (directly or indirectly) connected to the source

3



ω. Moreover, given a spanning tree p, there is a single path from any i P N to the source ω,
given by the edges pi, ppiqq, pppiq, p2piqq, . . . , ppt´1piq, ptpiq “ ωq, for some integer t ă n. Let us
denote by S pNωq the set of all spanning trees in the problem pNω,Cq. The cost of building
a spanning tree p P S pNωq is the sum of the costs of all the edges in this tree; that is,2

Cp “

n
ÿ

i“1

cippiq “
n
ÿ

i“1

c pepi q

Given a spanning tree p P S pNωq, we denote by ppi, jq the set of edges in the (unique) path
in p joining i and j.

Prim (1957) provides an algorithm that solves the problem of connecting all the agents to
the source at the minimum cost.3 We denote by m a tree with minimum cost and by Cm its
cost. That is, for all spanning tree p,

Cm “

n
ÿ

i“1

cimpiq ď Cp “

n
ÿ

i“1

cippiq.

Once a network is built, an important issue is how to allocate the associated cost among the
agents. A cost sharing rule for mcst problems is a function α : Nn Ñ Rn that proposes for
any mcst problem pNω,Cq an allocation pα1, α2, . . . , αnq P Rn, such that

n
ÿ

i“1

αi “ Cm.

Remark 1. In some contexts the non-negativity of the cost αi allocated to each individual
is required. This question is related to the assumption of property or non-property rights
on the locations that individuals occupy (see, for instance, Bogomolnaia and Moulin (2010)
for a discussion). In the second case, non-property rights approach, the allocations must be
necessarily non-negative.

In what follows we will consider the non-property approach, so the allocations will be
required to be non-negative.

Bird (1976) proposes a cost allocation so that each individual pays the cost of the edge
he directly uses to be connected in the minimum cost spanning tree. In case there are several
networks providing the (same) minimum cost, the Bird solution allocates to each individual
the average of the cost of the connections he uses in these networks. Since then, several authors
have proposed other solution concepts in the mcst literature: for instance, Kar (2002), Dutta
and Kar (2004), Feltkamp et al. (1994); Bergantiños and Vidal-Puga (2007), Bogomolnaia
and Moulin (2010), Trudeau (2012), etc.4

2 With some abuse of notation, when ppiq “ ω, cippiq “ cii.
3 This algorithm has n steps. First, we select the agent i with the lowest connection cost to the source. In

the second step, we select an agent in Nztiu with the smallest cost, either directly to the source or to agent i,
who is already connected. We continue by this way until all agents are connected, i.e., at each step, connecting
an agent who is still not connected to one who already is, or directly to the source.

4 See Bergantiños and Vidal-Puga (2008) for definitions and a comparative analysis of most of these solu-
tions.
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Some of these solutions take all the possible connections in the graph into account (all
cij costs), although most of these connections are not used in the optimal tree. Nevertheless,
other solutions use a reductionist approach and they are obtained by only considering some
of the connection costs. Specifically, Bird’s solution only considers the cost of the link each
individual uses in the optimal network while the costs of other edges are ignored. The Folk
and Cycle-complete solutions also take a reductionist approach. As the reductionist approach
ignores some of the available information it reduces the parameters of the problem (and the
complexity in computation).

3. Egalitarian cost sharing

In order to define the cost that any individual will have without cooperation, we introduce
the notion of indirect cost.

Definition 1. Given a mcst problem pNω,Cq, and i, j P N , the indirect cost to connect
individuals i and j is

c˚ij “ min
pPSpNωq

!

ÿ

cpeq e P ppi, jq
)

In particular, c˚ii denotes the indirect cost of connecting individual i to the source.

In this context, demanding that the maximum amount to be allocated to any individual
cannot exceed his (indirect) cost of connecting to the source (individual rationality) is a
compulsory requirement since, in other case, the individual would be better off acting by
himself and does not cooperating in building the optimal network.

Definition 2. A cost allocation α “ pα1, α2, . . . , αnq of the minimum cost Cm in a mcst
problem pNω,Cq, is individually rational if for all i P N, αi ď c˚ii.

We propose an egalitarian treatment of the agents. So, a first attempt to allocate the cost
of the optimal network, Cm is to divide it equally among the individuals:

αEcost
i “

1

n
Cm i “ 1, 2, . . . , n.

However, as Example (B) depicts, the equal division may be not individually rational: agent
1 is allocated 4 monetary units, whereas his individual cost to the source is c˚11 “ 1 monetary
unit. Then, equal cost division is not admissible since agent 1 will directly connect to the
source, without taking into account the other individuals, and then the best option for agents
2 and 3 is to build a network with a cost of 12 monetary units, that yields to a non-optimal
solution of the mcst problem.

3.1. Some considerations about individual rationality

Individual rationality provides a way to address the problem of allocating the optimal cost
in a mcst problem by transforming it into a surplus sharing problem:

• First, each agent pays his (indirect) cost to connect the source c˚ii. So, the individuals

jointly contribute with the amount C˚ “
n
ÿ

i“1

c˚ii to build a network.
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• Then, the efficient tree may be built, with cooperation, at a cost Cm ď C˚ and there is
a benefit from cooperation given by B “ C˚ ´ Cm.

• Any method used to share this benefit B,
n
ÿ

i“1

xi “ B, xi ě 0, provides a final allocation

of the cost Cm, αi “ c˚ii ´ xi, which is individually rational.

For instance, one way is to share equally the benefits obtained from cooperation:

αEq
i “ c˚ii ´

C˚ ´ Cm

n
i “ 1, 2, . . . , n.

However, as Example (B) shows, equalizing benefits makes individual 1 to end in a negative
allocation, that implies that this agent gets a net profit from participating in the network.
This also happens with the solution proposed by Kar (2002), or with Cycle-complete solution
(Trudeau, 2012). As mentioned in Bogomolnaia and Moulin (2010) this possibility only has
sense if the individuals have property rights on their location.

It is noteworthy that if we want to avoid this possibility (since we are in the non-property
rights approach) a constrained equal division should be considered: no one obtains a benefit
greater than his initial contribution. Then the benefit of cooperation should be shared as in
a claims problem in which each individual claims all his contribution to be returned.

3.2. A formal claims problem approach

A claims problem, which originates in the seminal paper by (O’Neill, 1982), is a situation
involving n individuals who claim some amount di, so that the aggregate demand exceeds the

available endowment B,
n
ÿ

i“1

di ě B. A claims rule ϕ divides efficiently the endowment so that

no agent receives a negative amount, nor more than his claim

0 ď ϕi ď di, i “ 1, 2, . . . , n,
n
ÿ

i“1

ϕi “ B

See Thomson (2003) for a survey on claims (bankruptcy) problems.

We follow a previous work (Giménez-Gómez et al., 2014), where two claims problems
(pessimistic and optimistic) are associated to a mcst problem. In that work, each individual’s
claim is defined as the difference between his indirect connection to the source and his cheapest
connection cost. Nonetheless, now, in order to define the claim, we are only considering the
indirect connection to the source (the amount initially paid).

Definition 3. Given a mcst problem pNω,Cq with minimum cost Cm, let C˚ “
n
ÿ

i“1

c˚ii and

B “ C˚ ´ Cm. For any vector d “ pd1, d2, . . . , dnq P Rn
`, where di represents the amount

individual i claims to be returned from his initial contribution c˚ii, 0 ď di ď c˚ii,
n
ÿ

i“1

di ě B,

the pair pB, dq defines a claims problem.
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If we use a claims rule ϕ to solve the problem pB, dq, then αi “ c˚ii´ϕi is an allocation of
the cost Cm of the optimal tree. In this case, the non-negativity of the claims rule, ϕi ě 0,
makes the allocations αi “ c˚ii ´ ϕi individually rational, whereas the claim boundedness,
ϕi ď di, implies that the allocations αi “ c˚ii ´ ϕi are non-negative, which is coherent with
the non-property rights approach.

In the literature on claims problems the constrained egalitarian solutions (agents are
treated as equal as possible, subject to some restrictions) appear in several ways. Among
all of them, Maimonides (1135–1204) introduces the two main egalitarian claims rules: the
Constrained Equal Awards and the Constrained Equal Losses, that equalize, respectively,
gains and losses satisfying the restrictions of a claims rule. Formally, given a claims problem
pB, dq P R` ˆ Rn

`

CEAipB, dq “ min tλ, diu λ such that
ÿ

iPN

CEAipB, dq “ B

CELipB, dq “ max t´λ` di, 0u λ such that
ÿ

iPN

CELipB, dq “ B

Note that these rules are dual of each other (see Aumann and Maschler (1985)), in the sense
that CEL allocates losses (the non received claim) in the same way as CEA allocates awards.
Formally, duality establishes that:

CEAipB, dq “ di ´ CELipD ´B, dq CELipB, dq “ di ´ CEAipD ´B, dq

where D denotes the aggregate claim, D “
n
ÿ

i“1

di.

We are assuming the following statements in order to define the set of possible claims
rules, as well as the claim of any individual.

Assumption 1. Each agent’s claim is his indirect cost of connecting the source, di “ c˚ii.

Assumption 2. Costs are allocated under egalitarian criteria.

Note that Assumption 1 implies selecting the largest possible claim (according with the
non-property approach) for any individual and in this case the conflicting situation obviously
appears: the benefit of cooperation is not enough to satisfy the aggregate claim that, in this
case, coincides with C˚: D “ C˚ ą C˚ ´ Cm. As we want to use an egalitarian criteria
(Assumption 2), we initially propose to use the CEA and CEL claims rules to allocate the
benefits of cooperation, once Assumption 1 has determined the amount each agent wants to
be returned (his claim).

Definition 4. Given a mcst problem pNω,Cq such that the cost of the optimal spanning tree
is Cm, B “ C˚ ´ Cm, di “ c˚ii

a) the constrained equal benefits sharing rule assigns to each individual i P N the amount

αcea
i pNω,Cq “ c˚ii ´ CEAipB, dq
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b) the constrained equal costs sharing rule assigns to each individual i P N the amount

αcel
i pNω,Cq “ c˚ii ´ CELipB, dq

Next example computes these solutions in the mcst problems introduced in Section 1 and
compares the results with Bird and Folk proposals.

Example 1. For the problems (A) and (B), introduced in Section 1, the following cost shares
are obtained:

αcea αcel Bird Folk

Problem

Agents
1 2 3 1 2 3 1 2 3 1 2 3

(A) 3 4 5 4 4 4 10 1 1 4 4 4

(B) 0 11
2

13
2 1 11

2
11
2 1 10 1 1 11

2
11
2

Note that the Folk and αcel proposals coincide and that this proposal is the one that most
equally distributes the cost of the optimal network.

The following result provides an alternative interpretation of the αcea and αcel sharing
rules.

Proposition 1. For any mcst problem pNω,Cq and any i P N ,

αcea
i pNω,Cq “ CELipCm, dq αcel

i pNω,Cq “ CEAipCm, dq

Proof. It comes immediately from the duality relations between CEA and CEL rules and
by noticing that the aggregate claim is D “ C˚, and then D ´B “ Cm.

The above result shows that under the constrained equal benefits sharing rule all agents
obtain the same savings respect to their initial contribution (the cost of the indirect connection
to the source), constrained to no one is allocated a negative amount. In the same way, under
the constrained equal costs sharing rule all agents pay the same amount, constrained to no
one is allocated an amount greater than his indirect cost to the source. So, the solution that
better captures the egalitarian criteria (all agents paying the same, if possible) is αcel and
that is the one we propose to obtain an egalitarian sharing of the cost of an optimal tree. The
following section analyzes its properties.

4. Axiomatic analysis

Taking the Folk solution as a benchmark, we analyze if the properties fulfilled by it are
satisfied or not by our egalitarian proposal αcel

i . In doing so, next we formally defined them,
See Bergantiños and Vidal-Puga (2007) and Bogomolnaia and Moulin (2010) for relationships
and interpretations of these properties.
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• A solution α for mcstp satisfies positivity (Pos) if αpNω, Cq ě 0, for any problem
pNω, Cq.

• A solution α for mcst problems satisfies continuity (Cont) if it is a continuous function
of C.

• A solution α for mcstp satisfies symmetry (Sym) if for any problem pNω, Cq such that
there are i, j P N with cik “ cjk, for all k P N , then αipNω, Cq “ αjpNω, Cq.

• A solution α for mcst problems satisfies strong cost monotonicity (StCMon) if for
any pair of problems pNω,Cq, pNω,C

1q such that C ď C1, then αipNω,Cq ď αipNω,C
1q

for all i P N .

• A solution α for mcst problems satisfies cost monotonicity (CMon) if for any pair
of problems pNω,Cq, pNω,C

1q such that C and C1 coincide except that cik ă c1ik, for
some i, k P N , then αipNω,Cq ď αipNω,C

1q.

• A solution α for mcst problems satisfies population monotonicity (PMon) if for
any problem pNω,Cq, any subset S Ď N and any i P S,

αipSω,C|Sq ě αipNω,Cq.

• A solution α for mcst problems satisfies ranking (Rkg) if for any problem pNω,Cq
and i, j P N such that cik ď cjk for all k P N , then αipNω,Cq ď αipNω,Cq.

• A mcst problem pNω, Cq is separable if there are two disjoint subsets S Y T “ N ,
S X T “ H, such that the mcst in N are union of mcst in each of the sub-problems,
mpNω,Cq “ m1pSω,C|Sq Ym

2pTω,C|T q.

A solution α for mcst problems satisfies separability (Sep) if for any separable problem
pNω,Cq, N “ S Y T , S X T “ H,

αipNω,Cq “

$

&

%

αipSω,C|Sq if i P S

αipTω,C|T q if i P T

• A solution α for mcst problems satisfies equal share of extra-costs (EqEx) if for
any pair of problems pNω,Cq, pNω,C

1q such that:

a) for all i P N, cii “ c0, c
1
ii “ c10, c0 ă c10.

b) for all i, j P N , i ‰ j, c1ij “ cij ď c0

then

αipNω,C
1q “ αipNω,Cq `

c10 ´ c0
n

@i P N

• Two mcst problems pNω,Cq and pNω,C
1q are tree equivalent if there is tree m such

that it is a minimum cost spanning tree for both problems, and moreover cimpiq “ c1impiq
for all i P N .

A solution α for mcst problems satisfies independence of irrelevant trees (IIT) if
for any pair of tree equivalent problems pNω,Cq and pNω,C

1q, then

αipNω,Cq “ αipNω,C
1q, @i P N

9



Proposition 2. The αcel solution fulfills positivity, continuity, cost monotonicity, strong cost
monotonicity, independence of irrelevant trees, ranking, symmetry and equal share of extra-
costs. It does not fulfill population monotonicity, nor separability.

Proof.
(1) Positivity is immediately fulfilled, since the CEL rule satisfies claims boundedness and
the maximum amount that can be returned is what each individual has paid.

(2) We know that Cm varies continuously with C (Bergantiños and Vidal-Puga, 2007), and the
indirect costs, di “ c˚ii are obviously a continuous function of the cost matrix (see Definition
1). On the other hand, CEA is a continuous function on its arguments, which proves that
αcel is continuous.

(3) We prove the strong cost monotonicity property. Since it implies cost monotonicity and
independence of irrelevant trees (Bergantiños and Vidal-Puga, 2007), all three properties are
fulfilled.

Consider a pair of problems pNω,Cq, pNω,C
1q such that C ď C1. Then, Cm ď C 1m and

di “ c˚ii ď d1i “ pc
1q˚ii, for all i P N . Since the claims rule CEA fulfills endowment monotonicity

and claims monotonicity (Thomson, 2003), then

CEAipCm, dq ď CEAipC
1
m, d

1q that implies αcel
i pNω,Cq ď αcel

i pNω,C
1q @i P N.

(4) Given a problem pNω,Cq and i, j P N such that cik ď cjk for all k P N , then it is obvious
that di “ c˚ii ď dj “ c˚jj . Therefore, CEAipCm, dq ď CEAjpCm, dq (order preservation, see

Thomson (2003)) and αcel fulfills ranking.

(5) Immediate, since ranking implies symmetry.

(6) If we consider two problems pNω,Cq, pNω,C
1q such that:

a) for all i P N, cii “ c0, c
1
ii “ c10, c0 ă c10.

b) for all i, j P N , i ‰ j, c1ij “ cij ď c0

then, C 1m “ Cm ` pc
1
0 ´ c0q. On the other hand, d1i “ c10 and di “ c0, for all i P N. So, as

all claims are identical for all the individuals, the CEL rule allocates the same amount B{n,
B1{n to each individual and

αcel
i pNω,C

1q “
C 1m
n
“
Cm

n
`
c10 ´ c0
n

“ αcel
i pNω,Cq `

c10 ´ c0
n

@i P N

which proves that this solution fulfills equal share of extra-costs.

(7) We know (Bergantiños and Vidal-Puga, 2007) that population monotonicity implies core
selection. Example 2 shows that αcel may provide allocations outside the core and then our
proposal does not fulfill population monotonicity.5

(8) Example 2 shows that αcel does not fulfill separability.

5 See Section 4.1.
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Example 2. Let us consider the mcst problem defined by the following picture (arcs not
depicted have a cost cij “ 2):

3 2 1

4

ω
221 1

There are several spanning trees with minimum cost Cm “ 6. One of them is given by:

mp1q “ ω mp2q “ ω mp3q “ 4; mp4q “ 2. .

If we denote S “ t1u , T “ t2, 3, 4u , m “ m1 Ym2, where m1 and m2 are the minimum cost
spanning trees in problems pS,Cq and pT,Cq, respectively. On the other hand, c˚ii “ 2, for
all i P N , and then B “ 2 and αcel “ p3{2, 3{2, 3{2, 3{2q. We observe that the separability
property implies α1 “ 2, so αcel does not fulfill this property.

4.1. Coalitional stability

Whenever cooperation is necessary, as in mcst situations, the literature on cost sharing
singles out stand alone core stability as the key property of any allocation rule: in order the
agents want to participate no coalition of agents should be charged more than their cost of
connecting to the source. Then, given a coalition S Ď N, the stand alone cost for this coalition
to be connected to the source is (in our non-property rights model)

vpSq “ min tCmpT q : S Ď T Ď Nu

where CmpT q denotes the cost of the optimal tree connecting coalition T to the source. Note
that for any i P N , v ptiuq “ c˚ii. Now we can define our next axiom requiring core stability.6

Definition 5. A cost allocation α “ pα1, α2, . . . , αnq of the minimum cost Cm in a mcst

problem pNω,Cq is a core selection if for all H ‰ S Ď N,
ÿ

iPS

αi ď vpSq.

Example 2 shows that αcel does not fulfill core selection, since it allocates a total amount
of 9{2 monetary units to agents in T “ t2, 3, 4u, strictly greater than their cost of connecting
the source, vpT q “ 4.

4.2. Axiomatic summary

Next, Table 1 provides an axiomatic comparison of Folk and αcel solutions (see Bergantiños
and Vidal-Puga (2007) for Folk results).

6 It is important to remark that the cost function CmpSq, S Ď N , is not monotonic since the addition of
some agents may reduce the cost of the coalition. As we follow the non-property rights approach, any coalition
S might use locations of individuals outside S to build their minimum cost spanning tree. So, vpSq represents
the minimum cost of connecting all individuals in S to the source ω, possibly using (and paying for) connections
of individuals outside S.
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Pos Cont Sym StCMon CMon PMon Rkg Sep EqEx IIT CS

Folk X X X X X X X X X X X

αcel X X X X X 5 X 5 X X 5

Table 1: Axiomatic analysis. The table shows which axioms are satisfied by the αcel solutions in comparison
with the Folk solution. Each column corresponds with an axiom, whereas each row corresponds with the
introduced solutions.

It is clear that Folk solution fulfills better properties than αcel . On the other hand, our
egalitarian solution is easier to compute and to understand. Moreover, it captures a solidarity
approach in which the optimal cost (obtained throughout cooperation) is paid as equally as
possible among the agents in the project.

The main objection to the αcel solution is that it fails to be a core selection. Then,
subsets of agents may have incentives to leave the grand coalition and perform their project
by themselves. We analyze this question in the following section.

5. A core egalitarian proposal

In this section we discuss core stability of our egalitarian solution. First we show some
classes of mcst problems in which αcel is a core selection. Later, we will propose a modification
of our solution (maintaining the egalitarian criteria) in order to achieve core selection for all
mcst situations.

5.1. Some mcst problems where αcel is a core-selection

In some families of mcst problems our egalitarian solution always provides core allocations.
Let us see two examples of such a kind of families:

1) Let us consider the so-called 2´mcst problems in which the connection cost between two
different individuals (houses, villages, . . . ) can only take one of two possible values (low
and high cost).7

Moreover, we assume that cij “ k1, i ‰ j, cii “ k2, and 0 ď k1 ď k2. Note that, for these
family of mcst problems the property equal share of extra-costs could be applied.

In this case, if there are n individuals, then Cm “ k2 ` pn´ 1qk1 and di “ c˚ii “ k2. As all
claims are identical, then

αcel
i “

k2
n
`
n´ 1

n
k1 i “ 1, 2, . . . , n

and, for all S Ď N , vpSq “ k2 ` k1 p|S| ´ 1q . Then, since k1 ď k2

ÿ

iPS

αcel
i “

ÿ

iPS

ˆ

k2
n
`
n´ 1

n
k1

˙

“ |S|

ˆ

k2
n
`
n´ 1

n
k1

˙

ď vpSq

7 See, for instance, Estévez-Fernández and Reijnierse (2014); see also Subiza et al. (2016) where this class
has been generalized to the so-called simple mcst problems.
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So the allocation provided by αcel belongs to the core of the cooperative game.

2) Let us consider linear mcst problems: a group of individuals N “ t1, 2, . . . , nu situated
in a row (equally separated) want to connect to a source ω. The cost of connecting one
individual with the next one is k monetary units. The cost of connecting individual 1 to
the source is M monetary units. If an individual wants to connect to the source, he must
do it through all its neighbors on the way towards the source and pay all costs. This is
the case of Example (A) in Section 1.

n . . . . . . 2 1 ω
Mkk k

Formally, for each i, j P N, i ‰ j, the connection cost is cij “ |i´ j|k. For each i P N, the
cost to the source is cii “M ` pi´ 1qk.

The minimum cost spanning tree m connects each individual to the next, mpjq “ j ´ 1,
j ě 2, and the first one with the source, mp1q “ ω, with a total cost Cm “M ` pn´ 1qk.
For each i P N , di “ c˚ii “M ` pi´ 1qk and then

B “ C˚ ´ Cm “ pn´ 1q
´

M `

´n

2
´ 1

¯

k
¯

For any coalition S Ď N , vpSq “ M ` kmax ti´ 1, i P Su. To obtain the allocation
provided by αcel we distinguish two cases:

a) If M ě k, αcel
i “

M

n
`
n´ 1

n
k, for all i P N . Then, for all S Ď N

ÿ

iPS

αcel
i “

ÿ

iPS

ˆ

M

n
`
n´ 1

n
k

˙

“ |S|

ˆ

M

n
`
n´ 1

n
k

˙

ď

ďM ` p|S| ´ 1qk ďM ` kmax ti´ 1, i P Su “ vpSq.

b) If M ă k, αcel
1 “M , αcel

i “ k, for all k ě 2. Then, for all S Ď N

i. If 1 P S,

ÿ

iPS

αcel
i “M ` p|S| ´ 1qk ďM ` kmax ti´ 1, i P Su “ vpSq.

ii. If 1 R S, max ti´ 1, i P Su ě |S| and

ÿ

iPS

αcel
i “ |S|k ďM ` kmax ti´ 1, i P Su “ vpSq.

So the allocation provided by αcel belongs to the core of the cooperative game.
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5.2. A core-egalitarian proposal

In order to look for a core selection respecting the egalitarian criteria, it would be better
to rewrite the αcel solution. Let us denote by A the set of non-negative individually rational
allocations in a mcst problem pNω,Cq

A pNω,Cq “

#

x P Rn :
n
ÿ

i“1

xi “ Cm 0 ď xi ď c˚ii i “ 1, 2, . . . , n

+

then the αcel solution can be expressed as (see, for instance, Vicente (2019) to obtain an
expression of the CEA claims rule as a minimization problem; see also Theorem 3, in Thomson
(2003)):

αcel pNω,Cq “ arg min

#

n
ÿ

i“1

ˆ

xi ´
Cm

n

˙2

x P A pNω,Cq

+

Note that, as the distance function is a continuous and strictly convex function, and the
feasible set A is a compact and convex set, the minimization problem has always a unique
solution. This expression provides us a way of obtaining a core allocation that tries to meet
our egalitarian criteria, by defining the solution:

βcel pNω,Cq “ arg min

#

n
ÿ

i“1

ˆ

xi ´
Cm

n

˙2

x P co pv pNω,Cqq

+

Obviously, this proposal is the most egalitarian core allocation.

On the other hand, as co pv pNω,Cqq Ď A pNω,Cq, we obtain the following result:

If αcel pNω,Cq P co pv pNω,Cqq then βcel pNω,Cq “ αcel pNω,Cq

In Example 2, αcel pNω,Cq “ p3{2, 3{2, 3{2, 3{2q R co pv pNω,Cqq. If we compute the βcel

solution, we obtain
βcel pNω,Cq “ p2, 4{3, 4{3, 4{3q

that coincides with the Folk solution in this example. Example 2 also shows that in general
2´mcst problems (there are only two possible costs: high and low) solution αcel may provide
allocations outside the core. The following result analyzes the result of applying our core-
egalitarian solution, βcel , to this kind of problems.

Proposition 3. For any 2´mcst problem pNω,Cq,

βcel pNω,Cq “ F pNω,Cq

where F stands for the Folk solution.

Proof. From Subiza et al. (2016) we know that in this class of problems there is a partition
of the set of agents, such that in each subset the Folk solution proposes the same allocation
to all individuals in this group (simple components). To simplify the proof we suppose that
there are just two components in the 2´mcst problem pNω,Cq:

8

N “ N1 YN2, N1 XN2 “ H, Fi “ c1, @i P N1, Fj “ c2, @j P N2

8 For more than two components, the reasoning follows an analogous argument.
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Let us denote by ni the cardinality of the subset Ni, i “ 1, 2, n “ n1`n2 and, as usually, Cm

is the cost of the optimal tree. Then,

n1c1 ` n2c2 “ Cm, n1c1 “ vpN1q, n2c2 “ vpN2q vpN1q ` vpN2q “ vpNq

by applying separability. Moreover, we know that this allocation is in the core of the monotonic
cooperative game.

On the other hand, after reordering the agents, we can write

βcel pNω,Cq “ px, yq x “ px1, x2, . . . , xn1q y “ py1, y2, . . . , yn2q

such that px, yq minimizes

n1
ÿ

i“1

ˆ

xi ´
Cm

n

˙2

`

n2
ÿ

j“1

ˆ

yj ´
Cm

n

˙2

px, yq P co pv pNω,Cqq

Then, by noticing that
n1
ÿ

i“1

xi “ vpN1q

n2
ÿ

j“1

yj “ vpN2q

the function minimizes when all components xi are identical for all i P N1, and yj are identical
for all j P N2. Then,

xi “
vpN1q

n1
“ c1 “ Fi yj “

vpN2q

n2
“ c2 “ Fj

and both solutions coincide.

5.3. A piece-wise linear extension

If we denote by Cn the set of all cost matrices involving n individuals, Cnˆn, and by Cbn
the set of elementary cost matrices, i.e., cij P t0, 1u for all i, j “ 1, 2, . . . , n, we know (see
Bogomolnaia and Moulin (2010)) that there is a basis

C1, C2, . . . , Cp P Cbn p “
npn` 1q

2

such that any cost matrix C P Cn can be expressed as

C “

p
ÿ

k“1

λk Ck λk P R

Then, given a mcst solution ψb defined only for elementary cost matrices (a partial solution),
its piece-wise linear extension ψ is defined by

ψ pNω,Cq “

p
ÿ

k“1

λk ψ
b
´

Nω,C
k
¯

As proved in Bogomolnaia and Moulin (2010), piece-wise linear solutions have the advan-
tage that many normative properties automatically extend from elementary to arbitrary cost
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matrices. In particular, they show that this is the case with the properties of ranking, cost
monotonicity, polynomial complexity, population monotonicity and positivity. Then, we can
define the piece-wise linear extension of the βcel solution defined only on elementary problems:

Υ pNω,Cq “

p
ÿ

k“1

λk β
cel

´

Nω,C
k
¯

As an immediate consequence of Proposition 3 (elementary problems are a particular case of
2´mcst problems) we obtain that this extension coincides with the Folk solution.

Corollary 1. For any mcst problem pNω,Cq, Υ pNω,Cq “ F pNω,Cq.

Then, the Folk solution appears as the piece-wise linear extension of a solution, βcel , that
picks the most egalitarian allocation in the core associated to the mcst problem, giving an
alternative interpretation to this solution.
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the comments from Hervé Moulin and other participants at SECW 2019, Sydney. Financial
support from the Generalitat Valenciana (BEST/2019 grants) to visit the UNSW is gratefully
acknowledged.

References

Aumann, R. J., Maschler, M., 1985. Game Theoretic Analysis of a bankruptcy from the
Talmud. Journal of Economic Theory 36, 195–213.

Bergantiños, G., Lorenzo, L., 2004. A non-cooperative approach to the cost spanning tree
problem. Mathematical Methods of Operations Research 50, 393–403.

Bergantiños, G., Vidal-Puga, J. J., 2007. A fair rule in minimum cost spanning tree problems.
Journal of Economic Theory 137 (1), 326–352.

Bergantiños, G., Vidal-Puga, J. J., 2008. On some properties of cost allocation rules in mini-
mum cost spanning tree problems. Czech Economic Review 2 (3), 251–267.

Bird, C. J., 1976. On cost allocation for a spanning tree: A game theoretic approach. Networks
6, 335–350.

Bogomolnaia, A., Moulin, H., 2010. Sharing a minimal cost spanning tree: Beyond the folk
solution. Games and Economic Behavior 69 (2), 238–248.

16



Dutta, B., Kar, A., 2004. Cost monotonicity, consistency and minimum cost spanning tree
games. Games and Economic Behavior 48 (2), 223–248.
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